Описание турнира математических боев школ Тульской области

Турнир математических боёв школ Тульской области является уже традиционным ежегодным математическим соревнованием для школьников.

Турнир проводится для совершенствования математического образования в Тульской области, развития системы командных интеллектуальных состязаний, вовлечения школьников и студентов в инновационную познавательную, исследовательскую, творческую деятельность, развития системы профессиональной ориентации учащихся и привлечения потенциальных абитуриентов к поступлению в ТГПУ им. Л.Н. Толстого.

Проект интегрирован в региональную целевую программу по выявлению и сопровождению талантливых детей, развитию их задатков и способностей в области математики.

Правила проведения математических боёв в г.Туле

  1. Математический бой (матбой) является соревнованием двух команд, состав которых определяется согласно регламенту данного математического соревнования или договорённости.

  2. В начале математического боя каждая команда получает список из 9 (одних и тех же) задач, подготовленных жюри.

  3. Командам предоставляются изолированные помещения и 1,5 часа времени на решение задач. В случае обоюдного согласия время решения может быть увеличено ещё на 0,5 часа. О своём желании использовать дополнительное время капитан команды должен известить жюри не менее чем за 5 минут до окончания основного времени, после чего команда не может отозвать свою просьбу.

  4. По окончании решения задач проводится жеребьёвка, которая определяет команду, начинающую матбой. Жеребьёвка не проводится в случае достижения обоюдного согласия по этому вопросу. Жеребьёвка не проводится, если регламентом предусмотрен иной порядок.

  5. Собственно математический бой состоит из четырёх туров, в каждом из которых обе команды выбирают по одной задаче (ранее не выбранной ни одной из команд), причём в первом и третьем туре первой выбирает одна команда, а во втором и в четвёртом – другая (таким образом, порядок выбора задач командами следующий: 1-2-2-1-1-2-2-1). Команда, выбравшая ту или иную задачу, назначает по этой задаче докладчика, противоположная команда – оппонента. Выбор задач, назначение докладчика и оппонента осуществляется капитаном команды и происходит до начала обсуждения предшествующей задачи.

  6. Каждый участник команды в течение одного математического боя может быть назначен один раз докладчиком и один раз оппонентом.

  7. Докладчику предоставляется до 10 минут на подготовку доклада, после чего запрещаются всякие контакты докладчика и оппонента с остальными членами своих команд, которые в обсуждении не участвуют.

  8. В процессе рассказа докладчиком решения задачи его могут прерывать только оппонент и жюри просьбой уточнить ранее сказанное. Наводящие вопросы и замечания, сделанные в это время, не оцениваются положительно, и верные ответы на них исправляют сделанные ранее ошибки. Докладчик может рассказать несколько различных решений задачи (или её некоторых этапов) с целью избежать получения командой-оппонентом дополнительных баллов (см. п.11).

  9. По окончании выступления докладчика слово предоставляется оппоненту, который может исправить и дополнить решение, задать вопросы докладчику, предложить своё решение. Докладчик в том же порядке может оппонировать оппоненту и так далее.

  10. Всякие верные высказывания участников команд, не являющихся по данной задаче докладчиками или оппонентами, засчитываются в баланс противоположной команде.

  11. Жюри по итогам решения каждой задачи распределяет баллы (целые числа), руководствуясь следующими критериями: докладчику из расчёта за верное решение – 10 баллов; оппоненту из следующего расчёта: в сумме докладчику и оппоненту за обнародованное совместными усилиями верное решение – 10 баллов, при существенном улучшении оппонентом верного решения, или изложении принципиально иного верного решения – 12 баллов, при несущественном улучшении оппонентом верного решения, или изложении несколько иного верного решения – 11 баллов. Оценка за недостаточно рациональное решение не снижается, дополнительные баллы за оригинальность не начисляются. Команда может получить 1 балл, если найдёт ошибку в решении соперника, не сделав, при этом, никакого продвижения к решению задачи.

  12. По окончании каждого тура жюри объявляет его итоги и текущий счёт. По окончании 4-го тура команда, набравшая не менее чем на 5 баллов больше соперника, объявляется победителем, в противном случае назначается дополнительный пятый тур. Командам предоставляется двадцать минут на решение оставшейся (9-ой) задачи. По окончании этого времени каждая из команд предоставляет в жюри письменное решение данной задачи. Жюри начисляет баллы каждой команде из расчёта 10.

  13. По окончании 5-го тура команда, набравшая не менее чем на 4 балла больше соперника по итогам пяти туров, объявляется победителем, в противном случае фиксируется ничья. Команда, набравшая после четырёх туров на 3-4 очка больше соперника, может отказаться от проведения дополнительного тура, зафиксировав ничью, об этом должен заявить капитан команды не позже, чем через 5 минут после начала решения задачи 5-го тура. В случае если регламентом турнира ничьи не предусматриваются (например в турнирах, проводящихся по олимпийской системе), то для определения победителей устраивается короткое дополнительное соревнование в соответствии со спецификой соревнования (в форме, по выбору жюри, определение победителя по жребию не допускается).

  14. Математический бой судит жюри в составе председателя и двух членов. В случае проведения в одном здании одновременно нескольких матбоёв в рамках турнира математический бой может судить жюри в составе двух членов, а также председатель общего жюри турнира (тура) и несколько (в зависимости от числа матбоёв) его заместителей.

  15. Во время решения задач в одном помещении с командой могут находиться только члены жюри, а также представитель команды-соперника.

  16. Участникам матбоя разрешается пользоваться чертёжными инструментами, калькуляторами, справочниками, учебниками и т.п., запрещается пользоваться компьютерами, планшетами, смартфонами, сборниками задач олимпиадного характера, конспектами занятий математических кружков, секций и т.п., а также в той или иной форме прибегать к мнению болельщиков, руководителей команды и прочих лиц. Во избежание недоразумений рекомендуется перед началом матбоя предъявить жюри материалы, которые предполагается использовать, без разрешения жюри запрещается пользоваться мобильными телефонами. Окончательное решение о возможности использования того или иного материала принимает председатель жюри.

  17. Требовать у жюри разъяснения по поводу оценки задачи, апеллировать к решению жюри может только капитан команды (или какой-либо другой участник по его поручению). Подобные рассмотрения могут происходить только непосредственно после объявления результатов каждого тура.

  18. О выбранной задаче, назначенном докладчике (оппоненте) капитан команды (только он) информирует жюри, после чего жюри информирует об этом другую команду. После этого перемена принятого решения не допускается.

Некоторые комментарии к "Правилам проведения математических боёв в г.Туле" и некоторые советы участникам математических боёв по тактике ведения боя.

  1. Порядок выбора задач командами (1-2-2-1-1-2-2-1) составлен так, чтобы ни одна из команд не имела преимущества, если бы команды выбирали задачи строго по очереди (1-2-1-2-1-2-1-2), то, очевидно, что первая команда получила бы преимущество.

  2. Докладчик имеет перед оппонентом большое преимущество, но это нормально, если обе команды правильно решили задачу, то счёт будет 10-0 в пользу докладчика (если у оппонента нет принципиально иного решения). Однако, то, что каждая команда является докладчиком и оппонентом одинаковое число раз (по 4), уравнивает ситуацию. Счёт 9-0, 10-1 и, тем более, 10-2 следует рассматривать как неплохой для оппонента.

  3. Именно поэтому жюри объявляет очередные оценки и текущий счёт не после каждой задачи, а после каждых двух (после "тура"), чтобы в текущем счёте не отражалось преимущество одной из команд, которая к тому времени чаще была докладчиком (после каждого тура число докладов у обеих команд одинаково).

  4. При выборе задачи нужно руководствоваться не только целью заработать на этой задаче побольше баллов, не позволить сопернику сделать того же, но и затруднить сопернику набирать баллы на следующих задачах. В связи с этим, было бы хорошо "перехватить" задачу у соперника, то есть выбрать задачу, которую соперник решил. Поэтому, обычно, при выборе задачи надо постараться выбрать ту задачу, которая кажется наиболее простой из оставшихся решённых.

  5. Когда перед началом разбора задач команда решает, лучше ли ей начинать первой или предоставить это право соперникам, то неплохо прикинуть, сколько решённых задач достанется команде, как докладчику. Например, если команда решила одну задачу, то, начав матбой докладчиком и выбрав решённую задачу, команда гарантированно "заработает" одну задачу. В противном случае, если матбой начнёт соперник, он может "перехватить" единственную задачу. Легко понять, что в случае, если решено 3 задачи и команда начинает, то ей гарантированно может достаться только одна задача, а, если предоставить право начать сопернику, то 2. В случае, если решено 5 задач, получается, что лучше начать первым...

  6. Надо иметь ввиду, что тактика, изложенная в п.5 не всегда бывает верна, так как не всегда команда соперника перехватывает решённые задачи, и не всегда оказывается верна собственная оценка того, верно ли решена та или иная задача.

  7. Когда, перед началом разбора задач, председатель жюри спросит капитанов, хотят ли они начинать первыми, не следует торопиться отвечать на вопрос, а нужно предложить кинуть жребий и только потом (если жребий будет выигран) ответить. В противном случае, Вы вооружите соперника некоторой, возможно, полезной ему информацией.

  8. Во время матбоя не следует забывать, что существует ограничение на число докладов и оппонирований одним человеком. Поэтому, нужно стараться, чтобы к выступлениям по некоторым задачам были готовы два и более человека. Возможно, полезно иметь в составе команды человека, который умеет ни сколько сам хорошо решать задачи, а хорошо умеет разбираться в решениях, подготовленных другими членами команды. Если команда выступает в неполном составе (4-5 человек), то возможности по выбору оппонентов и докладчиков (особенно в последних турах) резко сокращаются.

  9. Данные "советы" ни в коей мере не относятся к участникам матбоёв по классическим ("ленинградским") правилам. Принципиальное отличие правил состоит в том, что по "ленинградским" правилам команда выбирает задачу не себе, а сопернику, то есть осуществляет вызов. Порядок вызовов определяется тем, был ли корректен предыдущий вызов, то есть решила ли сама вызывающая команда задачу (в "ленинградских" правилах имеется весьма точная грань между решёнными и нерешёнными задачами). В матбоях по "ленинградским" правилам при вызове соперника обычно выбирается самая сложная задача из числа решённых. "Ленинградские" правила математического боя изложены в журнале «Квант» №10 за 1972 год, в журнале «Математика в школе» №4 за 1990 год, в книге С.А.Генкина, И.В.Итенберга, Д.В.Фомина «Ленинградские математические кружки», изданной в г. Кирове в 1994 году.